Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Vaccines (Basel) ; 12(4)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38675764

RESUMO

Vaccine development against group A Streptococcus (GAS) has gained traction in the last decade, fuelled by recognition of the significant worldwide burden of the disease. Several vaccine candidates are currently being evaluated in preclinical and early clinical studies. Here, we investigate two conjugate vaccine candidates that have shown promise in mouse models of infection. Two antigens, the J8 peptide from the conserved C-terminal end of the M protein, and the group A carbohydrate lacking N-acetylglucosamine side chain (ΔGAC) were each conjugated to arginine deiminase (ADI), an anchorless surface protein from GAS. Both conjugate vaccine candidates combined with alum adjuvant were tested in a non-human primate (NHP) model of pharyngeal infection. High antibody titres were detected against J8 and ADI antigens, while high background antibody titres in NHP sera hindered accurate quantification of ΔGAC-specific antibodies. The severity of pharyngitis and tonsillitis signs, as well as the level of GAS colonisation, showed no significant differences in NHPs immunised with either conjugate vaccine candidate compared to NHPs in the negative control group.

3.
Nat Rev Microbiol ; 21(7): 431-447, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36894668

RESUMO

Streptococcus pyogenes (Group A Streptococcus; GAS) is exquisitely adapted to the human host, resulting in asymptomatic infection, pharyngitis, pyoderma, scarlet fever or invasive diseases, with potential for triggering post-infection immune sequelae. GAS deploys a range of virulence determinants to allow colonization, dissemination within the host and transmission, disrupting both innate and adaptive immune responses to infection. Fluctuating global GAS epidemiology is characterized by the emergence of new GAS clones, often associated with the acquisition of new virulence or antimicrobial determinants that are better adapted to the infection niche or averting host immunity. The recent identification of clinical GAS isolates with reduced penicillin sensitivity and increasing macrolide resistance threatens both frontline and penicillin-adjunctive antibiotic treatment. The World Health Organization (WHO) has developed a GAS research and technology road map and has outlined preferred vaccine characteristics, stimulating renewed interest in the development of safe and effective GAS vaccines.


Assuntos
Antibacterianos , Infecções Estreptocócicas , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Macrolídeos/farmacologia , Macrolídeos/uso terapêutico , Farmacorresistência Bacteriana , Infecções Estreptocócicas/tratamento farmacológico , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/prevenção & controle , Streptococcus pyogenes/genética , Penicilinas/uso terapêutico
4.
Arch Med Res ; 53(7): 694-710, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36336501

RESUMO

BACKGROUND: The mutations in SARS-CoV-2 variants of concern (VOC) facilitate the virus' escape from the neutralizing antibodies induced by vaccines. However, the protection from hospitalization and death is not significantly diminished. Both vaccine boosters and infection improve immune responses and provide protection, suggesting that conserved and/or cross-reactive epitopes could be involved. While several important T- and B-cell epitopes have been identified, mainly in the S protein, the M and N proteins and their potential cross-reactive epitopes with other coronaviruses remain largely unexplored. AIMS: To identify and map new potential B- and T-cell epitopes within the SARS-CoV-2 S, M and N proteins, as well as cross-reactive epitopes with human coronaviruses. METHODS: Different bioinformatics tools were used to: i) Identify new and compile previously-reported B-and T-cell epitopes from SARS-CoV-2 S, M and N proteins; ii) Determine the mutations in S protein from VOC that affect B- and T-cell epitopes, and; iii) Identify cross-reactive epitopes with coronaviruses relevant to human health. RESULTS: New, potential B- and T-cell epitopes from S, M and N proteins as well as cross-reactive epitopes with other coronaviruses were found and mapped within the proteins' structures. CONCLUSION: Numerous potential B- and T-cell epitopes were found in S, M and N proteins, some of which are conserved between coronaviruses. VOCs present mutations within important epitopes in the S protein; however, a significant number of other epitopes remain unchanged. The epitopes identified here may contribute to augmenting the protective response to SARS-CoV-2 and its variants induced by infection and/or vaccination, and may also be used for the rational design of novel broad-spectrum coronavirus vaccines.


Assuntos
COVID-19 , Epitopos de Linfócito T , Humanos , Epitopos de Linfócito T/genética , Biologia Computacional , SARS-CoV-2
5.
Microorganisms ; 9(4)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33916894

RESUMO

Salmonella enterica serovar Typhi (S. Typhi) porins, OmpC and OmpF, are potent inducers of the immune response against S. Typhi in mice and humans. Vaccination with porins induces the protection against 500 LD50 of S. Typhi, life-lasting bactericidal antibodies and effector T cell responses in mice; however, the nature of the memory T cell compartment and its contribution to protection remains unknown. In this work, we firstly observed that vaccination with porins induces in situ (skin) CD4+ and CD8+ T cell responses. Analysis of the porin-specific functional responses of skin CD4+ and CD8+ T cells showed IFN-gamma- and IL-17-producing cells in both T cell populations. The memory phenotype of porin-specific T cells indicated the presence of resident and effector memory phenotypes in the skin, and a central memory phenotype in the skin-draining lymph node. In addition, we demonstrated that vaccination with porins via skin reduces the bacterial burden following challenge. Finally, evaluating the role of the circulating T cell memory population in protection, we showed that circulating memory CD4+ and CD8+ T cells are crucial in porin-mediated protection against S. Typhi. Overall, this study highlights the importance of inducing circulating memory T cell responses in order to achieve the optimal protection provided by porins, showing a mechanism that could be sought in the rational development of vaccines.

6.
Sci Rep ; 11(1): 4353, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33623073

RESUMO

Pili of Group A Streptococcus (GAS) are surface-exposed structures involved in adhesion and colonisation of the host during infection. The major protein component of the GAS pilus is the T-antigen, which multimerises to form the pilus shaft. There are currently no licenced vaccines against GAS infections and the T-antigen represents an attractive target for vaccination. We have generated a multivalent vaccine called TeeVax1, a recombinant protein that consists of a fusion of six T-antigen domains. Vaccination with TeeVax1 produces opsonophagocytic antibodies in rabbits and confers protective efficacy in mice against invasive disease. Two further recombinant proteins, TeeVax2 and TeeVax3 were constructed to cover 12 additional T-antigens. Combining TeeVax1-3 produced a robust antibody response in rabbits that was cross-reactive to a full panel of 21 T-antigens, expected to provide over 95% vaccine coverage. These results demonstrate the potential for a T-antigen-based vaccine to prevent GAS infections.


Assuntos
Antígenos de Bactérias/imunologia , Vacinas Estreptocócicas/imunologia , Streptococcus pyogenes/imunologia , Animais , Antígenos de Bactérias/química , Antígenos de Bactérias/genética , Linhagem Celular Tumoral , Humanos , Imunogenicidade da Vacina , Camundongos , Coelhos , Vacinas Combinadas/imunologia , Vacinas Sintéticas/imunologia
7.
ACS Infect Dis ; 7(2): 390-405, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33533246

RESUMO

Identifying the immunogenic moieties and their precise structure of carbohydrates plays an important role for developing effective carbohydrate-based subunit vaccines. This study assessed the structure-immunogenicity relationship of carbohydrate moieties of a single repeating unit of group A carbohydrate (GAC) present on the cell wall of group A Streptococcus (GAS) using a rationally designed self-adjuvanted lipid-core peptide, instead of a carrier protein. Immunological evaluation of fully synthetic glyco-lipopeptides (particle size: 300-500 nm) revealed that construct consisting of higher rhamnose moieties (trirhamnosyl-lipopeptide) was able to induce enhanced immunogenic activity in mice, and GlcNAc moiety was not found to be an essential component of immunogenic GAC mimicked epitope. Trirhamnosyl-lipopeptide also showed 75-97% opsonic activity against four different clinical isolates of GAS and was comparable to a subunit peptide vaccine (J8-lipopeptide) which illustrated 65-96% opsonic activity.


Assuntos
Lipopeptídeos , Streptococcus pyogenes , Adjuvantes Imunológicos , Animais , Carboidratos , Parede Celular , Camundongos
8.
Lancet Microbe ; 2(7): e291-e299, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-35544165

RESUMO

BACKGROUND: Streptococcus pyogenes is a leading cause of infection-related morbidity and mortality. A reinvigorated vaccine development effort calls for new clinically relevant human S pyogenes experimental infection models to support proof of concept evaluation of candidate vaccines. We describe the initial Controlled Human Infection for Vaccination Against S pyogenes (CHIVAS-M75) study, in which we aimed to identify a dose of emm75 S pyogenes that causes acute pharyngitis in at least 60% of volunteers when applied to the pharynx by swab. METHODS: This observational, dose-finding study was done in a clinical trials facility in Melbourne (VIC, Australia). Groups of healthy volunteers aged 18-40 years, at low risk of complicated S pyogenes disease, and without high type-specific anti-emm75 IgG antibodies against the challenge strain were challenged and closely monitored as inpatients for up to 6 days, and then as outpatients for 6 months. Antibiotics were started upon diagnosis (clinical signs and symptoms of pharyngitis and a positive rapid molecular test) or after 5 days in those without pharyngitis. Rapid test results were confirmed by standard bacterial culture. After a sentinel participant, cohorts of five and then ten participants were challenged, with protocol-directed dose-escalation or de-escalation for subsequent cohorts. The primary outcome was the proportion of participants at each dose level with pharyngitis by day 5 after challenge. The study is registered with ClinicalTrials.gov, NCT03361163. FINDINGS: Between July 10, 2018, and Sept 23, 2019, 25 healthy adults were challenged with emm75 S pyogenes and included in analyses. Pharyngitis was diagnosed in 17 (85%; 95% CI 62-97) of 20 participants at the starting dose level (1-3 × 105 colony-forming units [CFU]/mL). This high proportion prompted dose de-escalation. At the lower dose level (1-3 × 104 CFU/mL), pharyngitis was diagnosed in one of five participants. Immunological, biochemical, and microbiological results supported the clinical picture, with acute symptomatic pharyngitis characterised by pharyngeal colonisation by S pyogenes accompanied by significantly elevated C-reactive protein and inflammatory cytokines (eg, interferon-γ and interleukin-6), and modest serological responses to streptolysin O and deoxyribonuclease B. There were no severe (grade 3) or serious adverse events related to challenge. INTERPRETATION: We have established a reliable pharyngitis human infection model with reassuring early safety findings to accelerate development of vaccines and other interventions to control disease due to S pyogenes. FUNDING: Australian National Health and Medical Research Council.


Assuntos
Faringite , Escarlatina , Adulto , Austrália , Humanos , Faringite/tratamento farmacológico , Faringe/microbiologia , Streptococcus pyogenes
10.
Sci Transl Med ; 12(570)2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208501

RESUMO

The emergence of polymyxin resistance in carbapenem-resistant and extended-spectrum ß-lactamase (ESBL)-producing bacteria is a critical threat to human health, and alternative treatment strategies are urgently required. We investigated the ability of the hydroxyquinoline analog ionophore PBT2 to restore antibiotic sensitivity in polymyxin-resistant, ESBL-producing, carbapenem-resistant Gram-negative human pathogens. PBT2 resensitized Klebsiella pneumoniae, Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa to last-resort polymyxin class antibiotics, including the less toxic next-generation polymyxin derivative FADDI-287, in vitro. We were unable to select for mutants resistant to PBT2 + FADDI-287 in polymyxin-resistant E. coli containing a plasmid-borne mcr-1 gene or K. pneumoniae carrying a chromosomal mgrB mutation. Using a highly invasive K. pneumoniae strain engineered for polymyxin resistance through mgrB mutation, we successfully demonstrated the efficacy of PBT2 + polymyxin (colistin or FADDI-287) for the treatment of Gram-negative sepsis in immunocompetent mice. In comparison to polymyxin alone, the combination of PBT2 + polymyxin improved survival and reduced bacterial dissemination to the lungs and spleen of infected mice. These data present a treatment modality to break antibiotic resistance in high-priority polymyxin-resistant Gram-negative pathogens.


Assuntos
Proteínas de Escherichia coli , Doenças Neurodegenerativas , Preparações Farmacêuticas , Sepse , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Colistina/farmacologia , Reposicionamento de Medicamentos , Farmacorresistência Bacteriana , Farmacorresistência Bacteriana Múltipla , Escherichia coli , Proteínas de Escherichia coli/farmacologia , Klebsiella pneumoniae , Camundongos , Testes de Sensibilidade Microbiana , Sepse/tratamento farmacológico
11.
Front Immunol ; 11: 564627, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33133076

RESUMO

Despite extensive research, the development of an effective malaria vaccine remains elusive. The induction of robust and sustained T cell and antibody response by vaccination is an urgent unmet need. Chimeric virus-like particles (VLPs) are a promising vaccine platform. VLPs are composed of multiple subunit capsomeres which can be rapidly produced in a cost-effective manner, but the ability of capsomeres to induce antigen-specific cellular immune responses has not been thoroughly investigated. Accordingly, we have compared chimeric VLPs and their sub-unit capsomeres for capacity to induce CD8+ and CD4+ T cell and antibody responses. We produced chimeric murine polyomavirus VLPs and capsomeres each incorporating defined CD8+ T cell, CD4+ T cell or B cell repeat epitopes derived from Plasmodium yoelii CSP. VLPs and capsomeres were evaluated using both homologous or heterologous DNA prime/boost immunization regimens for T cell and antibody immunogenicity. Chimeric VLP and capsomere vaccine platforms induced robust CD8+ T cell responses at similar levels which was enhanced by a heterologous DNA prime. The capsomere platform was, however, more efficient at inducing CD4+ T cell responses and less efficient at inducing antigen-specific antibody responses. Our data suggest that capsomeres, which have significant manufacturing advantages over VLPs, should be considered for diseases where a T cell response is the desired outcome.


Assuntos
Anticorpos Antivirais/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Plasmodium yoelii/imunologia , Polyomavirus/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Animais , Proteínas do Capsídeo/imunologia , Epitopos de Linfócito B/genética , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/genética , Feminino , Imunidade Celular/imunologia , Imunização/métodos , Interferon gama/metabolismo , Vacinas Antimaláricas/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Mutagênese Insercional , Vacinas de Partículas Semelhantes a Vírus/genética
12.
Nat Commun ; 11(1): 5018, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33024089

RESUMO

The re-emergence of scarlet fever poses a new global public health threat. The capacity of North-East Asian serotype M12 (emm12) Streptococcus pyogenes (group A Streptococcus, GAS) to cause scarlet fever has been linked epidemiologically to the presence of novel prophages, including prophage ΦHKU.vir encoding the secreted superantigens SSA and SpeC and the DNase Spd1. Here, we report the molecular characterization of ΦHKU.vir-encoded exotoxins. We demonstrate that streptolysin O (SLO)-induced glutathione efflux from host cellular stores is a previously unappreciated GAS virulence mechanism that promotes SSA release and activity, representing the first description of a thiol-activated bacterial superantigen. Spd1 is required for resistance to neutrophil killing. Investigating single, double and triple isogenic knockout mutants of the ΦHKU.vir-encoded exotoxins, we find that SpeC and Spd1 act synergistically to facilitate nasopharyngeal colonization in a mouse model. These results offer insight into the pathogenesis of scarlet fever-causing GAS mediated by prophage ΦHKU.vir exotoxins.


Assuntos
Exotoxinas/metabolismo , Prófagos/genética , Streptococcus pyogenes/patogenicidade , Streptococcus pyogenes/virologia , Animais , Proteínas de Bactérias/farmacologia , Linhagem Celular , Eritrócitos/efeitos dos fármacos , Exotoxinas/genética , Feminino , Glutationa/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Faringe/citologia , Escarlatina/epidemiologia , Escarlatina/microbiologia , Streptococcus pyogenes/genética , Estreptolisinas/farmacologia , Superantígenos/genética , Superantígenos/metabolismo
13.
ACS Infect Dis ; 6(7): 1770-1782, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32407620

RESUMO

Subunit vaccines composed of protein antigens covalently attached to Toll-like receptor (TLR) agonists elicit superior immune responses compared to mixtures of antigens and TLR agonists. Among different conjugation approaches, enzyme-mediated ligation is one of the few that provides an opportunity for the generation of homogeneous, molecularly defined products in which protein antigens are maintained with native structures, which is most critical to elicit protective immune responses upon vaccination. Four highly conserved protein antigens from Group A Streptococcus (GAS) have the potential to be safe and efficacious vaccine candidates. After a TLR2 agonist fibroblast-stimulating lipopeptide-1 (FSL-1) was successfully attached onto each antigen using sortase A and techniques for their purification were developed, a combination vaccine containing interleukin 8 (IL-8) protease (Streptococcus pyogenes cell envelope proteinase [SpyCEP]), Group A Streptococcal C5a peptidase (SCPA), anchorless virulence factor arginine deiminase (ADI), and trigger factor (TF)-TLR2 conjugates was produced. This combination was assessed for immunity in mice and compared with mixtures of the four antigens with FSL-1 or alum. High titer antigen-specific IgG antibodies were detected from all vaccine groups, with antibodies elicited from FSL-1 conjugates around 10-fold higher compared to the FSL-1 mixture group. Furthermore, the FSL-1 conjugates afforded a more balanced TH1/TH2 immune response than the alum-adjuvanted group, suggesting that this combination vaccine represents a promising candidate for the prevention of GAS diseases. Thus, we established a conjugation platform that allows for the production of defined, site-specific antigen-adjuvant conjugates, which maintain the native three-dimensional structure of antigens and can be potentially applied to a variety of protein antigens.


Assuntos
Streptococcus pyogenes , Receptor 2 Toll-Like , Adjuvantes Imunológicos , Animais , Lipoproteínas , Camundongos , Vacinas Combinadas
14.
Methods Mol Biol ; 2136: 309-316, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32430832

RESUMO

This chapter presents the methodology to carry out infection of humanized plasminogen mice with Group A Streptococcus (GAS). This model of invasive disease has been widely used within the field to study the virulence of different GAS strains, host-pathogen interactions, the importance of particular virulence factors, and preclinical evaluation of novel treatments and vaccines. The model has shown to be highly reproducible and therefore represents an invaluable tool for GAS research.


Assuntos
Modelos Animais de Doenças , Plasminogênio/metabolismo , Infecções Estreptocócicas/imunologia , Animais , Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ligação Proteica , Streptococcus pyogenes/metabolismo , Virulência , Fatores de Virulência/metabolismo
15.
mBio ; 11(2)2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32156809

RESUMO

Recent global advocacy efforts have highlighted the importance of development of a vaccine against group A Streptococcus (GAS). Combo5 is a non-M protein-based vaccine that provides protection against GAS skin infection in mice and reduces the severity of pharyngitis in nonhuman primates. However, Combo5 with the addition of aluminum hydroxide (alum) as an adjuvant failed to protect against invasive GAS infection of mice. Here, we show that formulation of Combo5 with adjuvants containing saponin QS21 significantly improves protective efficacy, even though all 7 adjuvants tested generated high antigen-specific IgG antibody titers, including alum. Detailed characterization of Combo5 formulated with SMQ adjuvant, a squalene-in-water emulsion containing a TLR4 agonist and QS21, showed significant differences from the results obtained with alum in IgG subclasses generated following immunization, with an absence of GAS opsonizing antibodies. SMQ, but not alum, generated strong interleukin-6 (IL-6), gamma interferon (IFN-γ), and tumor necrosis alpha (TNF-α) responses. This work highlights the importance of adjuvant selection for non-M protein-based GAS vaccines to optimize immune responses and protective efficacy.IMPORTANCE Availability of a group A Streptococcus vaccine remains an unmet public health need. Here, we tested different adjuvant formulations to improve the protective efficacy of non-M protein vaccine Combo5 in an invasive disease model. We show that novel adjuvants can dramatically shape the type of immune response developed following immunization with Combo5 and significantly improve protection. In addition, protection afforded by Combo5 is not mediated by opsonizing antibodies, believed to be the main correlate of protection against GAS infections. Overall, this report highlights the importance of adjuvant selection in raising protective immune responses against GAS invasive infection. Adjuvants that can provide a more balanced Th1/Th2-type response may be required to optimize protection of GAS vaccines, particularly those based on non-M protein antigens.


Assuntos
Imunidade Celular , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/prevenção & controle , Vacinas Estreptocócicas/imunologia , Células Th1/imunologia , Adjuvantes Imunológicos/administração & dosagem , Hidróxido de Alumínio/administração & dosagem , Animais , Anticorpos Antibacterianos/imunologia , Citocinas/imunologia , Feminino , Imunização , Imunoglobulina G/imunologia , Interferon gama/imunologia , Masculino , Camundongos , Proteínas Opsonizantes/imunologia , Vacinas Estreptocócicas/administração & dosagem
16.
Rev Med Inst Mex Seguro Soc ; 58(2): 76-77, 2020 04 13.
Artigo em Espanhol | MEDLINE | ID: mdl-34101548

RESUMO

Antibodies are one of the most important components of the immune system against infections. So far, little is known about the contribution of antibodies in the protection against the SARS-CoV-2. Measuring antibody levels in the population will allow to determine who has been infected; this could also be useful to know if people with certain levels of antibodies are already protected against the disease.


Los anticuerpos son uno de los componentes más importantes de la respuesta inmunitaria contra las infecciones. Hasta el momento, poco se conoce sobre su contribución en la protección contra el SARS-CoV-2. Determinar los niveles de anticuerpos contra el virus en la población permitirá conocer qué personas han sido infectadas, y podría ser de utilidad para saber si las personas que tienen ciertos títulos de anticuerpos ya se encuentran protegidas contra la enfermedad.


Assuntos
COVID-19 , Anticorpos Antivirais , Humanos , Imunoglobulina G , SARS-CoV-2
17.
Rev Med Inst Mex Seguro Soc ; 58(Supl 2): S116-118, 2020 09 21.
Artigo em Espanhol | MEDLINE | ID: mdl-34695323

RESUMO

In the face of the urgent need for a COVID-19 vaccine, currently more than 90 vaccine candidates are being developed using different strategies, such as inactivated or attenuated SARS-CoV-2 virus, viral vectors expressing antigens of this virus, nucleic acids or purified viral proteins. These vaccines are in preclinical development and at least six of them have already been injected into volunteers in safety clinical trials. However, the characteristics of the protective immune responses are still unknown; therefore, there is not evidence to indicate that these vaccines will induce protection and if this will be long-lasting. The development of SARS-CoV-2 vaccines is vital; nevertheless, it is also important to unveil the characteristics of the protective immune responses to guide the design of a vaccine that generates a long-lasting protection against COVID-19.


Ante la urgente necesidad de una vacuna contra el virus causante de COVID-19, actualmente se han desarrollado más de 90 vacunas candidatas a partir de diferentes estrategias, como el uso del virus SARS-CoV-2 inactivado o atenuado, vectores virales que expresan antígenos de este virus, ácidos nucleicos o proteínas virales purificadas. Estas vacunas se encuentran en estudios preclínicos y al menos seis de ellas ya han sido inyectadas en voluntarios de ensayos clínicos de seguridad. Sin embargo, aún se desconocen las características de la respuesta inmune protectora y, por lo tanto, no hay evidencia que indique si estas vacunas lograrán inducir inmunidad y si esta será de larga duración. El desarrollo de vacunas contra el SARS-CoV-2 es imperante; no obstante, lo es también determinar las características de la respuesta inmune protectora para que guíe el diseño de una vacuna que genere protección de larga duración contra el COVID-19.

18.
J Control Release ; 317: 96-108, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31758971

RESUMO

Protein antigens are, in general, weakly immunogenic, and therefore require co-delivery with adjuvants to stimulate potent immune responses. The fusion of (poly)peptide antigens to immunostimulatory adjuvants (e.g. Toll-like receptor (TLR) agonists) has been demonstrated to greatly improve vaccine potency compared to mixtures of antigen and adjuvant. Chemical approaches, to enable the rapid, site-specific and high-yielding linkage of TLR2 ligands to recombinant protein antigens, have been previously optimized. These approaches require the use of denaturing conditions to ensure high reaction yields, which limits their application, as maintenance of native protein folding is necessary to elicit antibodies against conformational epitopes. Here, this work aimed to optimize an alternative method, to ensure the efficient bioconjugation of TLR2 ligands onto folded protein antigens. An enzyme-mediated approach, using Staphylococcus aureus sortase A (or a penta mutant with enhanced efficiency), was optimized for reaction yield and time, as well as enzyme type and amount. This approach enabled the site-specific conjugation of the TLR2-agonist fibroblast-stimulating lipopeptide-1 (FSL-1) onto a model group A Streptococcus (GAS) recombinant polytope antigen under conditions that maintain protein folding, yielding a homogeneous, molecularly-defined product, with ligation yields as high as 90%. Following intramuscular (IM) administration of the ligation product to humanized plasminogen AlbPLG1 mice, high-titer, antigen-specific IgG antibodies were observed, which conferred protection against subcutaneous challenge with GAS strain 5448. In comparison, mixtures of the GAS antigen with aluminum hydroxide or FSL-1 failed to provide protection, with the FSL-1 mixture yielding ~1000-fold lower antigen-specific IgG antibody titers, and the mixture with alum yielding a Th2-biased response compared to the more balanced Th1/Th2 responses observed with the FSL-1 conjugate. Overall, a FSL-1 bioconjugation method for the efficient production of antigen-TLR2 agonist conjugates, which maintain protein folding, was produced, with broad utility for the development of self-adjuvanting vaccines against subunit protein antigens.


Assuntos
Vacinas Estreptocócicas , Receptor 2 Toll-Like , Adjuvantes Imunológicos , Aminoaciltransferases , Animais , Proteínas de Bactérias , Cisteína Endopeptidases , Diglicerídeos , Ligantes , Camundongos , Oligopeptídeos , Proteínas Recombinantes
20.
Artigo em Inglês | MEDLINE | ID: mdl-31275867

RESUMO

An effective vaccine against the Plasmodium parasite is likely to require the induction of robust antibody and T cell responses. Chimeric virus-like particles are an effective vaccine platform for induction of antibody responses, but their capacity to induce robust cellular responses and cell-mediated protection against pathogen challenge has not been established. To evaluate this, we produced chimeric constructs using the murine polyomavirus structural protein with surface-exposed CD8+ or CD4+ T cell or B cell repeat epitopes derived from the Plasmodium yoelii circumsporozoite protein, and assessed immunogenicity and protective capacity in a murine model. Robust CD8+ T cell responses were induced by immunization with the chimeric CD8+ T cell epitope virus-like particles, however CD4+ T cell responses were very low. The B cell chimeric construct induced robust antibody responses but there was no apparent synergy when T cell and B cell constructs were administered as a pool. A heterologous prime/boost regimen using plasmid DNA priming followed by a VLP boost was more effective than homologous VLP immunization for cellular immunity and protection. These data show that chimeric murine polyomavirus virus-like particles are a good platform for induction of CD8+ T cell responses as well as antibody responses.


Assuntos
Formação de Anticorpos/imunologia , Antígenos de Protozoários/imunologia , Linfócitos T CD8-Positivos/imunologia , Polyomavirus/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Animais , Anticorpos Antiprotozoários , Linfócitos B , Linfócitos T CD4-Positivos , Modelos Animais de Doenças , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Imunidade Celular , Imunização , Imunização Secundária , Vacinas Antimaláricas , Camundongos , Camundongos Endogâmicos BALB C , Plasmodium yoelii , Polyomavirus/genética , Proteínas de Protozoários/imunologia , Vacinas de Partículas Semelhantes a Vírus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...